

UTKAL INSTITUTE OF ENGINEERING & TECHNOLOGY

DISCIPLINE:	SEMESTER:			
ETC	4TH Sem	NAME OF THE TEACHING FACULTY: Er KALAKAR MOHANTY		
SUBJECT:		Semester From Date:16/01/2024	ļ.	
ELECTRICAL MACHINE	No of Days/Per week class allotted: 4 Class P/W(60)	To Date:26/04/2024		
		No. Of Weeks: 15		
WEEK	CLASS DAY	THEORY TOPICS(PART-1 ELECTRICAL MATERIAL)	REM	ARKS
Ia	1 st	Properties & uses of different conducting material.	Date	Dean/Prin cipal
	2 nd	1.2 Properties & use of various insulating materials used electrical engineering.		
	3 rd	1.3 Various magnetic materials & their uses.		
	4 th	2.1 Construction, Principle & application of DC Generator		
2nd	1 st	2.2 Classify DC generator including voltage equation.		
	2 nd	2.2 Classify DC generator including voltage equation.		
	3 rd	2.4 Parallel operation of DC generators.		
	4 th	2.1 Construction, Principle & application of DC Generator		
3rd	1 st	2.4 Parallel operation of DC generators.		
	2 nd	2.1 Construction, Principle & application of DC Generator		
	3 rd	3.1 Principle of working of a DC motor.		
	4 th	3.2 Concept of development of torque & back EMF in DC motor including simple problems.		
4th	1 st	3.3 Derive equation relating to back EMF, Current, Speed and Torque equation		
	2 nd	3.4 Classify DC motors & explain characteristics, application.		
	3 rd	3.5 Three point & four point stator/static of DC motor by solid State converter.		
	4 th	3.6 Speed of DC motor by field control and armature control method.		
5 th	1 st	3.7 Power stages of DC motor & derive Efficiency of a DC motor.		
	2 nd	3.2 Concept of development of torque & back EMF in DC motor including simple problems.		

	3 rd	3.3 Derive equation relating to back EMF, Current, Speed and Torque equation	
	$4^{ m th}$	3.4 Classify DC motors & explain characteristics, application.	
6 th	1 st	4.1 Mathematical representation of phasors, significant of operator "J"	
	2 nd	4.2 Addition, Subtraction, Multiplication and Division of phasor quantities	
	3 rd	4.3 AC series circuits containing resistance, capacitances, Conception of active, Reactive and apparent power and Q- factor of series circuits & solve related problems	
	4 th	4.4 Find the relation of AC Parallel circuits containing Resistances, Inductance and Capacitances Q-factor of parallel circuits	
	1 st	4.1 Mathematical representation of phasors, significant of operator "J"	
	2 nd	4.2 Addition, Subtraction, Multiplication and Division of phasor quantities.	
	3 rd	4.3 AC series circuits containing resistance, capacitances, Conception of active, Reactive and apparent power and Q- factor of series circuits & solve related problems.	
	4 th	4.4 Find the relation of AC Parallel circuits containing Resistances, Inductance and Capacitances Q-factor of parallel circuits.	
	1 st	Ideal transformer.	
8 th	2^{nd}	5.2 Construction & working principle of transformer	
	3 rd	5.3 Derive of EMF equation of transformer, voltage transformation ratio	
	4 th	5.4 Discuss Flux, Current, EMF components of transformer and their phasor diagram under no load Condition.	
gth	I st	5.5 Phasor representation of transformer flux, current EMF primary and secondary Voltages under loadedcondition	
	2 nd	Problems only on finding moment of resistance of T-beam section when N.A. lies within or up to the bottom of flange shall be asked in written examination	
	3 rd	5.6 Types of losses in Single Phase (1-ø) Transformer.	
	4 th	Doubt Clear Class	

10 th	1 st	5.7 Open circuit & short-circuit test (simple problems)
	2 nd	5.8 Parallel operation of Transformer.
	3 rd	6.1 Construction feature, types of three-phase induction motor
	4 th	6.2 Principle of development of rotating magnetic field in the stator.
11th	1 st	6.3 Establish relationship between synchronous speed, actual speed and slip ofinduction motor
	2 nd	6.4 Establish relation between torque, rotor current and power facto
	3 rd	6.4 Establish relation between torque, rotor current and power facto
	4 th	6.1 Construction feature, types of three-phase induction motor
12th	1 st	6.3 Establish relationship between synchronous speed, actual speed and slip ofinduction motor
	2 nd	7.1 Construction features and principle of operation of capacitor type and shaded pole type of single-phase induction motor
	3 rd	7.2 Explain construction & operation of AC series motor.
	4 th	7.3 Concept of alternator & its application.
13th	1 st	7.1 Construction features and principle of operation of capacitor type and shaded pole type of single-phase induction motor
	2 nd	7.2 Explain construction & operation of AC series motor.
	3 rd	7.3 Concept of alternator & its application.
	4 th	7.3 Concept of alternator & its application.
	l st	1.2 Networks 7.3 Concept of alternator & its
14th	2 nd	application.
	3 rd	Doubt Clear Class
	4 th	ASSIGNMENT
15th	1 st	DISCUSSION
	2 nd	ASSIGNMENT
	3 rd	Doubt Clear Class
	4 th	DISCUSSION
		R.

Systiphakash Swain HOD

Chittanaujan Perida DEAN

